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Improving software and software development requires a new generation of 
programming languages and tools that make it possible to apply the enormous 
computational resources on a programmer’s desk to the problem of finding errors and 
inconsistencies in programs. Although these tools alone will not find, let alone 
eliminate all programming errors, they have already demonstrated that they can 
improve program quality and reduce development cost. The Software Productivity 
Tools group in Microsoft Research has developed a variety of programming tools, 
which use simple, partial specifications and sophisticated program analysis to find 
errors systematically. This paper explains why this approach is beneficial, describes 
some existing tools, and points out the many open research directions. 

1 Introduction 

This paper briefly outlines the research of the Software Productivity Tools (SPT) group in 
Microsoft Research. This group, in collaboration with an internal tools group (Programmer 
Productivity Research Center), is pursuing a focused strategy to improve both the quality of software 
and the effectiveness of developers. Our approach combines better and more expressive programming 
languages with stronger, semantically aware programming tools. The goal is to develop a new 
programming style that exploits the enormous computational power of today’s computers to detect 
systematically errors and inconsistencies in large software systems. This research began when the 
author spent his sabbatical at Microsoft and observed that programmers there, like programmers 
elsewhere, relied on tools conceived before the programmers themselves. Computers and the scale of 
programming have changed dramatically over the past 20–30 years, but our primary tools—compilers, 
editors, debuggers, source code control systems, bug databases, etc.—are lineal descendents of tools 
developed in the heyday of timesharing. 

These time-honored tools deal with the mechanics of programming, but provide little help in 
detecting most programming errors, which still are found by testing, an expensive and ultimately 
incomplete method. It is accepted wisdom that the earlier in a development cycle that an error is found, 
the less it costs to correct it. Nevertheless, in today's practice, it is not uncommon for a simple 
programming error, such as a leaked resource, to lurk for months or years. Finding and fixing the bug 
may involve several people beyond the developer who introduced the error, such as a customer 
support technician to find out about the error from customers, a tester to reproduce the error, and a 
(perhaps different) developer to diagnose the error and correct it. 

Most tools provide little assistance in finding bugs because of their superficial understanding 
of language semantics and complete ignorance of the abstractions used to construct a program. 
Without mechanical assistance, quality programs will remain difficult and time consuming to produce. 
Our belief is that in programming, as in most human endeavors, appropriate tools can simultaneously 
improve both quality and productivity. Tools that quickly and systematically detect errors and fully 
explain their causes will lead to better software and reduce programmer (and tester) effort. These tools 
are not a panacea, as innovative approaches to program design, comprehension, structure, 
development, and testing are also badly needed. 
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Briefly, SPT’s approach has been to elicit supplemental information from programmers and 
to use these partial specifications to detect inconsistencies and errors in the actual code. The closest 
analogy to this work is type systems in programming languages. Although some languages—for 
example, Lisp and, more recently, scripting languages such as tcl or perl—do not have explicit types, 
programmers have come to recognize the compelling advantages of rich type systems, such as those in 
ML or Java. Types enhance documentation of programmer intent, provide a foundation for 
constructing abstractions, statically detect certain errors, and facilitate compiler optimization. 
Moreover, types give lie to the claim that programmers will not write specifications, as types are 
specifications of a limited aspect of a program’s behavior. Programmers happily write type 
declarations because they are generally easy to produce and understand, improve the 
comprehensibility of code, and detect a significant number of errors. These attributes are essential in 
all tools that demand programmer effort. 

Another, complementary way of looking at this research is that it is applying the classic 
engineering principle of redundancy to build reliable systems from unreliable components. The 
redundancy in this case comes from a non-executable specification, which is not needed to specify the 
algorithm in a program, but instead serves the twin roles of increasing programmer comprehension 
and exposing inconsistencies that may indicate errors. The latter task has been the focus of our 
research, though the former may prove more significant in the long run. 

This paper briefly describes several tools developed by the SPT group and other researchers, 
and concludes by looking into the future. 

2 SPT Research 

The SPT group has built several tools that use partial behavioral specifications to find errors 
in programs. A behavioral specification constrains a program’s temporal sequence of actions, as 
contrasted to traditional types, which specify legal operations on values. For example, consider the 
Unix socket API, which manipulates sockaddr’s and sockets. Type checking can ensure that an 
appropriate value is passed to each routine, but it cannot check that an object created in a call on 
socket is bound by a call on bind before it is passed to the connect function. Many, but certainly 
not all, programming errors arise from disobeying a rule of this sort along one or more paths through a 
program. To compound the situation, these rules are rarely stated precisely or completely, but instead 
are described by a combination of prose and sample code. 

The first three projects described below—SLAM, ESP, and Vault—explore different 
approaches to specifying program behavior at interface boundaries and utilize different techniques to 
validate that code follows its specification. The fourth project, Behave!, extends this approach to 
concurrent systems. 

2.1 SLAM 

SLAM checks temporal safety properties of C programs. A programmer writes these 
properties in a language called SLIC and then feeds them and a program to the SLAM tool, which 
applies a model-checking-like approach to verify that the code obeys its specification [1-3]. SLAM 
uses an abstraction called a boolean program to model a program. A boolean program is the program’s 
skeleton, consisting only of simple control flow and boolean computation. SLAM starts with a simple 
program model and iteratively refines it into an increasing accurate model of a program’s possible 
behavior. SLAM uses this model to determine whether a feasible path will violate a rule in the SLIC 
specification. If the current model cannot answer this question, SLAM produces a more accurate 
model and continues the process. 

SLAM is a fully automatic tool, which does not require programmer annotation, beyond the 
specification of the program properties. When SLAM detects an error, it provides a detailed 
explanation of why the error occurs, including the complete interprocedural path and values of 
variables leading to the error.  Moreover, unlike most tools, SLAM can avoid reporting “false 
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positives,” that is, artifacts due to the analysis process.  However, since non-trivial program analysis is 
undecidable in general, SLAM may fail to determine whether a property holds or not. Despite this 
possibility, we believe that this is an interesting point in the space of programming tools, for many 
programmers would value a small number of extremely precise error reports, even if a tool 
occasionally says “I don’t know.” 

We have built a working version of SLAM and are currently using it to find errors in 
Windows device drivers, which are relatively small pieces of code that form a critical and error-prone 
portion of all operating systems. Moreover, the many families of existing drivers require a tool, like 
SLAM, in which specification is distinct from code. SLAM has successfully found previously 
unknown errors in drivers. 

2.2 ESP 

ESP is a related project that is focused on a very different point in the space of tools. It looks 
for a similar class of errors in very large (millions of line) C and C++ programs. ESP builds on our 
previous research on efficient global value flow analysis [7, 10] and takes a more traditional program-
analysis approach to this problem. Like SLAM, ESP’s analysis is sound, so it does not miss possible 
errors in a program.  However, because of its scalability goals, ESP tolerates some false positives, 
though the hope is to keep them at an acceptable level by careful program analysis.  

ESP breaks the problem of tracking behavioral properties into three simpler problems: 
tracking the sequence of operations along a control-flow path, tracking the flow of values between 
operations, and determining the feasibility of program paths. Each of these problems can be solved by 
a scalable program analysis technique, and these separate analyses can be combined to track SLIC-like 
properties through a very large program. The trade-off, of course, is precision. Each analysis is itself a 
conservative approximation to a program’s behavior, and ESP itself introduces limitations.  For 
example, to ensure that the analysis remains tractable, ESP tracks the state of each object separately, 
so it cannot detect correlations among objects’ state, which might rule out infeasible program behavior 
that appears to be an error. 

However, the tradeoffs in ESP are based on the intuition that there is a fundamental difference 
between the way a good programmer reasons about control and data flow in his or her own code and 
in code written by others. A programmer is more likely to rely on correlations among actions in her 
own code, but confirm actions in others’ code through explicit testing. If this hypothesis is correct, 
ESP should be able to identify correct code (and therefore avoid many false error reports) through a 
combination of strong local analysis and weak global analysis. ESP has been used to verify file I/O 
behavior of the gcc compiler. 

2.3 Vault 

The Vault programming language takes a very different approach to specifying and checking 
program behavior [8].  Unlike SLAM and ESP, which separate a specification from a program, Vault 
provides a rich type system that allows a programmer to describe a function’s behavior as part of its 
type signature.  When a caller of this function is compiled, the type checker ensures the behavioral 
rules, as well as the usual type rules. 

Vault enforces interface rules by statically tracking programmer-designated resources through 
keys. A resource key cannot be duplicated or thrown away. Memory, for example, can be treated as a 
resource to prevent errors such as dangling pointers and memory leaks. A block of memory named by 
a key is accessible so long as the program holds the corresponding key in scope. Another example is a 
key representing access to a shared object. The key comes into scope through the acquire lock 
operation. Since operations on the shared object require its key, the object can only be accessed while 
the key is in scope. Releasing the lock takes the key out of scope, and access to the shared resource is 
lost.  
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In general, resource keys enable a programmer to describe application- or API-specific rules, 
such as finalization, operation ordering, life-time dependencies between different data objects, and 
mutual exclusion in multithreaded environments. A function signature can specify which resource 
keys must be held, and their state, before a call on the function and which keys will be held on return. 
A compiler can check these rules each time that code using resource-annotated types is compiled. 

Vault offers some compelling advantages because a specification is integrated into a program, 
where it increases programmers’ understanding of the code.  Moreover, the consistency of the code 
and specification is checked each time the program is compiled.  However, to ensure that type 
checking remains fast and efficient, Vault imposes some restrictions—for example, that the state of an 
object must be identical along all paths that meet at a point in the program—that are not necessary in 
other approach, such as SLAM, which tracks values along individual paths through a program. We 
used Vault to write a floppy disk driver for Windows 2000 and to capture some of the rules for 
Microsoft’s DirectX library. 

2.4 Behave! 

The Behave! project is focused on specifying and checking the behavioral properties of 
asynchronous programs, which are a particularly challenging and error-prone type of program [5]. 
This programming style is common in operating system kernels; distributed systems; and other event-
driven, message-passing programs. Because of their asynchrony and concurrency, these programs are 
difficult to write, understand, or modify and are nearly impossible to test thoroughly. This project uses 
a behavioral type system to specify the intended behavior of an asynchronous program and then uses 
model-checking techniques to verify that the code obeys its specification. 

3 Related Projects 

This line of research has attracted considerable interest recently (most of which is not 
described here), and several tools have come into effective use. Intrinsia developed Prefix [4], which, 
although it performs an unsound, incomplete program analysis, has nevertheless proven effective at 
Microsoft in finding many common programming errors, such as null-pointer dereferences and misuse 
of common APIs. Prefix analyzes a limited, but carefully selected, set of program paths. Along each 
path, it examines the effects of each statement, to ensure its preconditions—such as a pointer being 
non-null when dereferenced. Because Prefix’s analysis is heuristic, the tool pays considerable 
attention to explaining errors and presenting them in an order likely to favor real errors over false 
positives. In practice, this aspect of the tool is crucial to programmer acceptance, particularly for large 
programs that produce thousands of warnings. 

More recently, Engler built a tool called Metal [6, 9], which uses modified version of gcc to 
find errors in the Linux kernel. Metal starts with a programmer-supplied specification of a 
programming convention or interface behavior, which is written as a finite-state automaton. Metal 
examines each function in a program by tracking the automaton along all program paths and reporting 
transitions into error states. Interprocedural information is provided by an ad-hoc prepass over the 
program, which captures and records properties of functions for use in the local analysis phase. 
Engler’s approach has demonstrated that even limited program analysis can be effective in finding 
thousands of errors in the Linux kernel. More recently, he has used Metal to infer program 
specifications, by looking for sequences of actions that occur predominately in one order, under the 
assumption that the rare exception to a rule is worth examining. 

4 Discussion and Future Work 

These are among the first of a new generation of programming tools that have the potential to 
improve both software quality and programmer productivity. Realistically, no one contends that these 
tools are Brook’s “silver bullet” that eradicates programming problems. Even with greatly improved 
tools, programming will remain a challenge and some errors will be found only when a program runs. 
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This is to be expected, as these tools deliberately narrow their focus to realistic, attainable goals such 
as partial specification and error detection. The older, more ambitious approach sought total 
correctness—the absence of errors—which proved impossible in practice and produced no tangible 
benefits for most programmers. 

Experience shows that limited specification is far better than no specification, both because 
partial specification opens the possibility of automatically validating program properties, and also 
because precise, concrete specifications reduce programmer misunderstanding, which is the ultimate 
source of many errors. Programmers rarely write precise documentation or specifications because non-
executable text of this sort takes time and provides few benefits. However, when a specification 
becomes an input to a tool, its value to a programmer increases, as does the incentive to produce and 
maintain this type of documentation. Moreover, tools enhance the credibility of this type of 
specification, since their currency and accuracy is guaranteed by the verification that connect them to 
the actual code. 

Nevertheless, there is need for considerably more research and development in this area. We 
have only recently moved beyond types and values to start exploring which other aspects of a program 
can be stated and checked automatically. Much of the current research focuses on temporal sequences 
of actions, but we do not yet have the experience to know if current specification languages are 
expressive enough or whether they and the analysis tools detect important classes of errors. Moreover, 
these properties are very low-level and often difficult to relate to important issues such as 
performance, reliability, or security. Concurrency poses hard problems that are becoming increasingly 
urgent as programming moves into the distributed world made possible by the Internet. In addition, 
the program analysis that underlies these tools needs further improvement. Although great strides have 
been made in recent years in interprocedural and pointer analysis and software model checking, the 
techniques too often offer a stark choice between scalable or precise algorithms. 
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